Lesson 6 Teaching Portal Materials

Episode Supports

Episode 1: Making Sense

Episode Description

Sasha and Keoni use the equation $y=\frac{x^{2}}{4 p}$ to plot a parabola for $p=\frac{1}{4}$. They make a conjecture for how the shape of the parabola will change as p gets larger.

Students' Conceptual Challenges

After using the equation $y=x^{2}$ to plot points on the parabola with a p-value of $\frac{1}{4}$, Keoni struggles to locate coordinates of the focus of the parabola [5:06-5:24]. He first places the focus at $(0,1)$ [5:35-5:59]. Keoni states that $(0,1)$ is a "general place" to put the focus.
\Rightarrow Sasha and Keoni notice a conflict when asked to state the p-value for the parabola when the focus is one unit above the origin. They restate that p is the distance between the focus and the vertex. Keoni notices that they are currently working with a p-value of $\frac{1}{4}$. Consequently, Sasha and Keoni adjust the focus location [6:02-6:19].

Focus Questions

For use in a classroom, pause the video and ask these questions:

1. [Pause the video at 5:05]. What are some other points that you know are on the parabola because of the geometry of the parabola?
2. [Pause the video at 9:16]. What are the coordinates of the red point that Keoni says is on the parabola?

Supporting Dialogue

Invite students attend to the reasoning of others while reflecting on multiple strategies.

- Stop the video at [10:00]. Ask one student to present one method for checking to see if the point $(1 / 2,1 / 4)$ is on the parabola. Ask a second student to use the first student's method to
"Lesson 6 Episode 1 Teacher Support Materials" by MathTalk is licensed under CC BY-NC-SA 4.0
check a different point, say (1,1).
- Repeat the process for a new method of checking.

Math Extensions

1. What happens when the focus is below the vertex? Graph the parabola with a focus at ($0,-$ $1 / 4)$ and vertex at $(0,0)$. Label the focus, the directrix, and several points on the parabola.
