Lesson 10 Teaching Portal Materials

Episode Supports

Episode 5: Reflecting

Episode Description

Sasha and Keoni examine yet another equation of a parabola that is not in vertex form, $y=$ $x^{2}-4 x+5$. They start out by seeking a method to re-express the equation in vertex form.

Students' Conceptual Challenges

Re-expressing this equation in vertex form is challenging. Many students have experiences reexpressing quadratic expressions in factored form. Keoni writes $(x-5)(x+1)$. While this is true, it does not support their problem solving goal.
$>$ After looking for geometric information, Keoni erases his factored representation. Sasha and Keoni keep working to find a way to re-express the equation in vertex form.

Focus Questions

For use in a classroom, pause the video and ask these questions:

1. [Pause the video at $1: 38$]. Why did Keoni erase $(x-5)(x+1)$? What's wrong?
2. [Pause the video at 3:00] What do think of Sasha's expression $x(x-4)+5$? Is it correct? Does it help?

Supporting Dialogue

Invite students to reflect on problem solving as a whole class. Elicit multiple answers from the class:

- At 2:23, Keoni says "let's not give up." What do you do when you get stuck?
- It seems that Sasha and Keoni make progress when the teacher asks how the equation $y=$ $x^{2}-4 x+5$ is different from $y=x^{2}-4 x+4$. How does that question help them? How can they check that $y=x^{2}-4 x+5$ is the same as $y=(x-2)^{2}+1$?
"Lesson 10 Episode 5 Teacher Support Materials" by MathTalk is licensed under CC BY-NC-SA 4.0 Learning through dialogue

Math Extensions

1. Rewrite the equation $y=x^{2}-4 x+7$ in vertex form. How do you know the two equations are equivalent?
2. Rewrite the equation $y=x^{2}-4 x+3$ in vertex form. How do you know the two equations are equivalent?
"Lesson 10 Episode 5 Teacher Support Materials" by MathTalk is licensed under CC BY-NC-SA 4.0
