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Essential Understanding 4

A number of mathematical connections link ratios and fractions:
•  Ratios are often expressed in fraction notation, although 

ratios and fractions do not have identical meaning.
•  Ratios are often used to make “part-part” comparisons, but 

fractions are not.
•  Ratios and fractions can be thought of as overlapping sets.
•  Ratios can often be meaningfully reinterpreted as fractions.

Because ratios can be written in fraction form as a/b , many students 
believe that ratio is just another word for fraction. The use of fraction 
language in discussions of problems involving ratios can be particu-
larly confusing to students. For example, in discussing the solution to 
the proportion shown in connection with the problem in figure 1.17, 
a teacher may say, “Six is the answer because 2/3 and 6/9 are equiva-
lent fractions.” Essential Understanding 4 highlights the mathematical 
connections between ratios and fractions. The notation a/b can easily 
cloud students’ understanding of ratios if the students have not yet 
grasped the connections between ratios and fractions.

If you make orange juice in the ratio of 2 cans of orange 
concentrate to 3 cans of water, how many cans of orange 
concentrate do you need to use with 9 cans of water?

22
3 93 9

== xx

Fig. 1.17. A typical textbook problem expressed as a proportion

Ratios and fractions do not have identical meanings. Ratios 
are often used to make part-part comparisons, though fractions are 
not. For example, consider a salad dressing that is 2 parts vinegar 
to 5 parts oil. The ratio of vinegar to oil is expressed as 2 : 5, 2 to 5, 
or 2/5 . In this context, 2/5 is a part-part comparison. In contrast, the 
fraction of the salad dressing that is oil is 5/7, which is a part-whole 
comparison, and the fraction that is vinegar is 2/7, which is another 
part-whole comparison.

Ratios and fractions can be conceived as overlapping sets 
(Clark, Berenson, and Cavey 2003). An example of a ratio that is not 
a fraction is the golden ratio 

( 5 1
2

5 1+5 1 ). 

This ratio is an irrational number, whereas fractions are rational 
numbers. A second example of a ratio that is not a fraction is the 

Interpreting a 
fraction as a ratio 

is one of several 
interpretations of 

fractions discussed 
in Developing 

Essential 
Understanding of 
Rational Numbers 

for Teaching 
Mathematics in 

Grades 3–5 
(Barnett-Clarke 

et al., forthcoming).
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part-part comparison of vinegar to oil presented above—namely, 
2/5 . Furthermore, ratios can involve more than two terms, such as 
the ratio of numbers of containers of whole milk to numbers of 
containers of low-fat milk to numbers of containers of nonfat milk 
in a certain store (e.g., 5 : 3 : 1). In the intersection of the sets of  
ratios and fractions are ratios that are formed as part-whole com-
parisons, as illustrated in figure 1.18. For example, the ratio of 
vinegar to total ingredients in the salad dressing—namely, 2 : 7—can 
also be thought of as a fraction: two-sevenths of the dressing is 
vinegar.

Ratios Fractions

Fig. 1.18. Ratios and fractions as overlapping sets 

At the other extreme are the various ways of thinking of frac-
tions as entities other than part-whole comparisons. These ways 
include thinking of a fraction as a point on a number line (e.g., 8/9 
as a number between 0 and 1 on a number line). A fraction con-
ceived in this way is often called a “fraction-as-measure.” A frac-
tion can also be thought of as an operator, such as a “shrinker” or 
“stretcher,” which transforms the size of a given amount. Consider, 
for example, shrinking an amount by the fraction 1/3. In neither 
case—fraction as measure or fraction as operator—is the fraction 
typically conceived as a ratio.

Despite the fact that ratios and fractions do not share identi-
cal meanings, many ratios can be meaningfully reinterpreted as 
fractions. Reconsider the 2 to 5 ratio of vinegar to oil in the salad 
dressing example. You can reinterpret this part-part comparison 
as a part-whole comparison (i.e., as two-fifths of something). 
Remember that the ratio 2 : 5 does not indicate the exact amounts 
of vinegar or oil used in a particular recipe. The dressing could 
use 2 cups of vinegar and 5 cups of oil, 4 cups of vinegar and 10 
cups of oil, 1 cup of vinegar and 2 1/2 cups of oil, and so forth. The 
recipe might also use 6 tablespoons of vinegar and 15 tablespoons 
of oil, 1/2 pint of vinegar and 1 1/4 pints of oil, and so on. In each of 
these recipes, 2/5 also has meaning as a fraction because each recipe 
calls for two-fifths as much vinegar as oil.

For example, consider a salad dressing recipe that calls for 4 
cups of vinegar and 10 cups of oil. The fact that 4 is 2/5 of 10 can 
be illustrated visually. Figure 1.19 separates the 10 cups into 5 equal 



28 Ratios, Proportions, and Proportional Reasoning

groups, or fifths. One-fifth of 10 cups is 2 cups. Figure 1.20 then 
shows two one-fifths of 10 cups, or 4 cups. The amount of vinegar 
in this recipe (4 cups) is 2/5 of the amount of oil (10 cups). In sum, 
the ratio 2 : 5 can be reinterpreted as the fraction 2/5, to mean that 
salad dressing made from this recipe always has 2/5 as much vinegar 
as oil, no matter what particular amounts of vinegar and oil some-
one uses.

10 cups
of oil

of the oil is 2 cups1
5 

Fig. 1.19. One-fifth of 10 cups

4 cups
of vinegar

of the oil is 4 cups2
5 

10 cups
of oil

Fig. 1.20. Two-fifths of 10 cups

A second way to interpret the ratio 2 : 5 as the fraction 2/5 is 
possible. Suppose that you use 2 cups of vinegar and 5 cups of oil 
to make the salad dressing. Figure 1.21 shows the “joining” of the 
vinegar and oil to form a batch of salad dressing. You maintain 
the ratio 2 : 5 if you partition the batch into 5 equal parts. Your 
partitioning of the batch partitions both the oil and vinegar into 5 
equal parts. Splitting 5 cups of oil into 5 equal parts yields 1 cup 
of oil in each part. Splitting 2 cups of vinegar into 5 equal parts 
is more difficult. One way is to split the first cup of vinegar into 5 
equal parts, which yields 1/5 cup of oil in each part. By repeating 
this process with the second cup, you obtain another 1/5 cup in each 
part. Altogether, if you partition 2 cups of oil into 5 equal parts, you 
have 2/5 of a cup of oil in each part. Consequently, salad dressing 
made with 2/5 cup of vinegar and 1 cup of oil, as illustrated in  
figure 1.22, maintains the 2 : 5 ratio of vinegar to oil.

In sum, the ratio 2 : 5 (meaning “2 parts vinegar to 5 parts oil”) 
can be reinterpreted as the fraction 2/5  in two different ways. The 
first way is to say that in this salad dressing recipe the amount of 
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vinegar is always 2/5 the amount of oil, no matter what particular 
amounts of vinegar and oil someone uses to make the dressing. 

Fig. 1.21. A composed unit of 2 cups of vinegar and 5 cups of oil

Fig. 1.22. One-fifth of the batch is 2/5 cup of vinegar and 1 cup of oil

This interpretation is based on understanding the ratio 2 : 5 as a 
multiplicative comparison—namely, that 2 is 2/5 of 5. The second 
way to interpret the ratio as a fraction is to think of the two-fifths 
as referring to the pairing of 2/5 cup of vinegar with 1 cup of oil, 
which maintains the recipe. This interpretation is based on under-
standing the ratio 2 : 5 as a composed unit, and then partitioning 
that unit into five equal parts. Reflect 1.4 invites you to apply these 
two ways of reinterpreting a ratio as a fraction in a different real-
world context.

One way to reinterpret the ratio 3 : 4 (3 gallons every 4 min-
utes) as the fraction 3/4 is to say that the number of gallons of water 
in the pool is always 3/4 of the number of minutes that have passed, 

Reflect 1.4  

Water is being pumped through a hose into a large swimming pool so that 3 
gallons collect in the pool every 4 minutes. What are two different ways to 
reinterpret the ratio 3 : 4 as the fraction 3/4 in this context? What are two ways 
to reinterpret the ratio 4 : 3 as the improper fraction 4/3? 
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assuming that the water continues to flow into the pool at a con-
stant rate. For example, after 4 minutes, 3 gallons of water are in 
the pool, and 3 is 3/4 of 4. Similarly, after 20 minutes, 15 gallons 
of water are in the pool, and 15 is 3/4 of 20. This interpretation is 
based on thinking of the ratio 3 : 4 as a multiplicative comparison—
namely, that 3 is 3/4 of 4. A second way to reinterpret the ratio 3 : 4 
as the fraction 3/4 is to consider that 3/4 of a gallon is the amount of 
water that needs to flow into the pool in 1 minute to maintain the 
same pumping rate. This interpretation is based on thinking of the 
ratio 3 : 4 as a composed unit and then partitioning that unit into 
four equal parts.

The pumping rate can also be captured by the ratio 4 : 3, mean-
ing that 4 minutes elapse for every 3 gallons of water that are 
pumped into the pool. This ratio can be reinterpreted as the improp-
er fraction 4/3 in two ways. The first way is to say that the number 
of minutes that elapse is always 4/3 times the number of gallons of 
water that has flowed into the pool in that time. For example, 12 
gallons are pumped in 16 minutes, and 12 × 4/3 = 16. This interpre-
tation is based on understanding the ratio 4 : 3 as a multiplicative 
comparison—namely, that 4 is 4/3 (or 11/3 ) times 3. The second way 
to reinterpret the ratio 4 : 3 as the improper fraction 4/3 is to consider 
that 4/3 minutes is the amount of time that it takes to pump 1 gallon 
of water into the pool. This interpretation is based on joining 4 min-
utes and 3 gallons into a composed unit and partitioning that unit 
into three equal parts. 
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