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One area of difficulty for students when reasoning about exponential expressions is correctly 
manipulating and making sense of exponents (Berezovski, 2004; Cangelosi, et al., 2013; Gol 
Tabaghi, 2007). Common curricular approaches develop the idea of an exponent as the number 
of times a number is multiplied by itself (Ellis et al., 2015). However, a central limitation of this 
“number of factors” meaning for exponents is an inability to make sense of non-integer 
exponents. While progress has been made in addressing this concern through the expansion of 
approaches to developing meaning for exponents (Thompson, 2008; Ellis et al., 2015; Kuper and 
Carlson, 2020), questions remain about how to engender scaling-continuous covariational 
reasoning (Ellis et al., 2020) to supports students in calculating non-integer exponents. While in 
scaling-continuous covariation students think about change as it happens over an interval of a 
fixed size, they can also continuously resize the intervals, a process called zooming. We argue 
that exponentially scaled number lines can support students in applying scaling-continuous 
covariational reasoning about non-integer exponents. 

An exponentially scaled number line is a number line where same-sized segments of the line 
represent an increase by the same multiplicative factor. For example, if students were asked to 
model the growth of bacteria whose amount triples each hour, students might create equally 
spaced tick marks on a number line labeled 1, 3, 9, etc., on one side of the number line to 
represent the number of bacteria and 0, 1, 2, etc., on the other side to represent the elapsed time. 
With support, students could eventually come to realize any same-sized segments of the line 
represent an increase by the same multiplicative factor of the bacteria. They could also come to 
realize that on one side of the number line there are exponents, while on the other there are the 
corresponding powers of three. Students could then make sense of expressions such as 31/2 by 
leveraging the idea that this represents the number of bacteria after half of an hour and will be 
represented on the number line by a segment that is half as long as the whole hour segment. They 
could then reason that over the two half-hour segments the number of bacteria grew by the same 
factor, which means they need the number that when multiplied by itself gives 3, namely √3. 

We see this model as productive because we believe that it fosters scaling-continuous 
reasoning. An exponential number line is consistent with representing growth that is continuous 
and is also consistent with resizing chunks continuously. As students use the number line to 
explore values between their chunks they will need to reason simultaneously with the change in 
time and the change in the number of bacteria. Analogous to the linear reasoning behind 
positioning day 0.5 at the midpoint between of hour 0 and hour 1, the multiplicative reasoning of 
the number line directs students to find a multiplicative value for a half hour period growth such 
that two half hour growths results in a one hour growth. This process can then be repeated and 
the same reasoning applied for successively smaller segments of a growth. We believe this 
allows for both zooming in on the number line and a continuous image of the exponential 
function, vis-à-vis the number line, to emerge. 
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