Home
Episode 2 Supports
Episode Description
Exploring: Keoni and Sasha continue to explore the role that the p-value has on the shape of the graph of parabolas represented by y = x2/(4p). They graph a parabola with a p-value of 1/2, and compare it to the graph of a parabola with a p-value of 1/4 from Episode 1.
Students’ Conceptual Challenges
As Keoni and Sasha graph the parabola with p = 1/2, they seem surprised by the question asking them to predict the x-value of a point on the parabola for a y-value of 4 [6:25-6:52]. They struggle to make sense of the question.
Focus Questions
For use in a classroom, pause the video and ask these questions:
1. [Pause video at 1:14]. Sasha and Keoni have drawn a horizontal line. What is true about every point on that horizontal line?
2. [Pause video at 5:49]. Plot some other points on the parabola where the p-value is 1/2. Then we will compare our work with Sasha and Keoni’s.
3. [Pause video at 6:22]. How did Sasha and Keoni determine that the points (–2,2) and (2,2) are on the parabola?
Supporting Dialogue
Invite students to engage reflect on the multiple methods to approach a problem by asking:
Math Extensions
1. On one coordinate grid, graph two parabolas with a vertex on the origin: one where the focus is 1/4 units below the vertex, and one where the focus is 1/2 units below the vertex. For each parabola, label its directrix, the coordinates of the focus, and several points on the parabola.
2. How did you find the coordinates of the points on the parabola? Describe each method that you used.
Mathematics in this Lesson
Lesson Description
Targeted Understanding
CC Math Standards
CC Math Practices
Lesson Description
Keoni and Sasha compare the graphs of y = x2/(4p) for p-values of 1/4, 1/2, and 1. They figure out the effect that changing the value of p has on the graph of the parabola.
Targeted Understandings
This lesson can help students:
Common Core Math Standards
• CCSS.M.HSF.IF.C.7: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
In an elaboration of this standard, the CCSSM learning trajectory for functions (Grade 8 and High School) states, “functions are often studied and understood as families, and students should spend time studying functions within a family, varying parameters to develop an understanding of how the parameters affect the graph of a function and its key features.” In this lesson, Keoni and Sasha graph (by hand) a set of parabolas with increasing p-values of 1/4, 1/2, and 1. They figure out that increasing the p-value in the family of parabolas with vertex at the origin (and as represented by the function y = x2/(4p)) results in the parabola getting wider on the same coordinate grid.
Common Core Math Practices
CCSS.Math.Practice.MP6. Attend to precision.
According to the Common Core’s description of Math Practice 6, “mathematically proficient students try to communicate precisely to others.” In this lesson, Sasha and Keoni improve in their ability to speak with precise mathematical language. For example, in Episode 5, they begin by stating the following inaccurate relationship: “When you change the value of p, the parabola gets wider” [0:38]. They then refine the statement to one that is more accurate: “As p increases, the parabola widens” [0:47]. In a second example, also from Episode 5, Sasha and Keoni are asked to articulate what they notice about the three “special points” that they have identified: (1/2, 1/4), (1, 1/2), and (2,1). At first, Keoni and Sasha report that “the x-value is, it’s half of it, right, it’s 2 and then 1” [5:37]. However, as they continue to work, they are able to more precisely convey that they are halving the x-value to obtain the y-value [6:15], which is not the same as saying that the x-value is one-half the y-value. They also re-express this relationship as the x-value of a special point being double its y-value [7:07]. This precision of language contributes to Sasha and Keoni’s ability to eventually express the special point for a parabola with unknown p-value as (2p, p) [8:02 – 8:20].