Home
Episode 1 Supports
Episode Description
Making Sense: Keoni notices that the grid allows them to measure the distance between some points and lines. Sasha and Keoni use the grid and the definition of a parabola to validate that three points are on the parabola.
Students’ Conceptual Challenges
Students may be confused about what measuring system to use with a coordinate grid, especially after having used a ruler to measure similar distances in Lesson 1.
Focus Questions
For use in a classroom, pause the video and ask these questions:
1. [Pause video at 1:19]. What do Sasha and Keoni know about the coordinate grid? What else do you know about the coordinate grid?
2. [Pause video at 3:32]. How is Sasha measuring the distances between the point on the parabola and the focus and the directrix? Why does her method work?
Supporting Dialogue
Invite students to reflect on initiating problem solving by asking this question:
Math Extensions
These questions allow students to extend the concepts and terminology from the episode:
1. Why are the axes on a coordinate grid perpendicular? How is that helpful?
2. Describe any other ways you know about to describe and measure points on a plane.
Mathematics in this Lesson
Lesson Description
Targeted Understanding
CC Math Standards
CC Math Practices
Lesson Description
Keoni and Sasha work with a parabola on the coordinate grid. They use the properties of the grid and the Pythagorean theorem to determine if the coordinates of a point are on a given parabola. They apply these methods to find the missing x-value of a point on the parabola for a given y-value.
Targeted Understandings
This lesson can help students:
Common Core Math Standards
• CCSS.M.HSG.GPE.A.2: Derive the equation of a parabola given a focus and directrix.
Lesson 2 connects the geometric definition of a parabola from Lesson 1 with an algebraic coordinate grid, which makes the derivation of an equation of a parabola possible. Sasha and Keoni then derive the equation of:
o particular parabolas in Lessons 3 and 4;
o any parabola with vertex (0,0) in Lesson 5; and
o any parabola with vertex (h,k) in Lesson 9.
• CCSS.M.HSG.GPE.B.4. Use coordinates to prove simple geometric theorems algebraically.
Sasha and Keoni use the coordinates on an algebraic Cartesian grid, along with the definition of a parabola, to validate that three points are on the parabola.
• CCSS.M.8.G.B.8. Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. Keoni and Sasha use the Pythagorean theorem, along with the coordinate system and the definition of a parabola, to determine the x-value for a point on the parabola given its y-value.
Common Core Math Practices
CCSS.Math.Practice.MP5 Use appropriate tools strategically.
In this lesson, Sasha and Keoni use an important mathematical tool— the Pythagorean theorem. A discussion in the lesson models an important habit of mind related to tool use. Specifically, when Keoni and Sasha are stumped about how to measure the length of a diagonal line segment from a point on the parabola to the focus [1:46, Episode 2], their teacher encourages them to write down everything they know [1:56, Episode 2] and articulate what they are trying to find [2:53, Episode 2]. In the process, a right triangle emerges on the grid, with two sides of known length and one of unknown length. This practice of analyzing the situation prepares Sasha and Keoni to strategically apply the Pythagorean theorem once the teacher suggests its use [3:56, Episode 2].