Lesson 8 Teaching Portal Materials

Episode Supports

Episode 6: Exploring

Episode Description

Sasha and Keoni notice patterns in the equations they have derived for parabolas with the same p-values but different vertices. They predict the equation for a parabola with a p-value of 3 and a vertex at (7, 2).

Students' Conceptual Challenges

Keoni initially thinks the distance from a general point to the directrix (y = -1) is y - 1 [3:48]. Sasha questions this [3:58]. Keoni explains that he was only looking at the label of the directrix when he labeled the distance [4:06].

Together, they point out the distances of y, 1, and y + 1. Using the coordinate grid, they make sense of the three lengths of the sides of the triangle [4:14-5:54].

Focus Questions

For use in a classroom, pause the video and ask these questions:

- 1. Pause the video at 1:27]. How does Keoni know that his point is a "special point"?
- 2. [Pause the video at 8:11]. Why did Keoni multiply out the $(y-5)^2$ and the $(y+1)^2$ terms but leave the $(x-7)^2$ unchanged?

Supporting Dialogue

Provide opportunities to for students to revoice mathematical thinking. Ask a few students to revoice the ideas used in this episode:

- Revoice how you can determine the lengths of the sides of the triangle.
- Revoice how Sasha and Keoni solved for y [8:14-8:59].

Math Extensions

1.	Try deriving the equation of another parabola using the methods of this episode. Derive the
	equation for a parabola with a p -value of 3 and a vertex of (-4, 1).

2.	Show your work as you derive this equation. Label your focus and directrix as well as the
	lengths of the sides of the right triangle.