Lesson Description

Given the equation of a parabola in any form, Sasha and Keoni find geometric information (such as the focus, directrix, p-value, and vertex) about the parabola.

Targeted Understandings

This lesson can help students:

- Understand that when the equation representing a parabola is written in vertex form [y= $\left.\frac{(x-h)^{2}}{4 p}+k\right]$, then the vertex can be easily determined as (h, k) and the p-value can located in the denominator and can be used, along with the vertex, to determine the focus and directrix of the parabola.
- Understand that geometric information (e.g., the vertex, p-value, focus, and directrix) can also be located from a parabola that is given in a different form, by first re-expressing the equation in an equivalent vertex form.

Common Core Math Standards

CCSS.M.HSF.IF.C.8: Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

In this lesson, Sasha and Keoni re-express quadratic functions like $y=2(x-3)^{2}+1$ and $y=$ $x^{2}-4 x+4$ in vertex form $\left[y=\frac{(x-h)^{2}}{4 p}+k\right]$ in order to locate geometric information about the graphs (such as the vertex, p-value, focus and directrix). To rewrite the function $y=$ $2(x-3)^{2}+1$ in vertex form, they think of 2 as 1 divided by $1 / 2$ [see 2:20-2:31 in Episode 3] and $1 / 2$ as 4 multiplied by $1 / 8$ [3:21-3:43, Episode 3]. To rewrite the function $y=x^{2}-4 x+4$ in vertex form, Sasha and Keoni figure out that they need to factor, but that not every way of factoring is helpful. For example, factoring out the x from $x^{2}-4 x$ yields $\mathrm{y}=x(x-4)+4$ [1:06 - 1:30, Episode 4], which doesn't help them. However, factoring the entire trinomial yields $y=$ $(x-2)^{2}$, which is very close to being in vertex form [1:50-2:05, Episode 4].
"Mathematics in this Lesson: Lesson 10" by MathTalk is licensed under CC BY-NC-SA 4.0

Common Core Math Practices

CCSS.Math.Practice.MP1: Make sense of problems and persevere in solving them.
An important aspect of Math Practice 1 is not giving up, even when several attempts have not been fruitful. In Episode 5, Sasha and Keoni face a challenging task of rewriting $y=x^{2}-4 x+$ 5 in vertex form. They begin with a false start, as Keoni incorrectly factors $x^{2}-4 x+5$ as ($x-$ $5)(x+1)$ [1:08-1:44, Episode 5]. Instead of getting discouraged, Keoni tells Sasha, "Let's not give up" [2:19-2:26]. And they don't! Sasha tries factoring out the x [2:53-3:07], which doesn't end up helping. However, when they explain the correspondences between $y=x^{2}-$ $4 x+5$ and the function they worked with in Episode $4\left[y=x^{2}-4 x+4\right]$, they are able to successfully rewrite the given equation as $y=(x-2)^{2}+1$ [4:25-4:46].
"Mathematics in this Lesson: Lesson 10" by MathTalk is licensed under CC BY-NC-SA 4.0

